commentcalculer 2 3 d'une somme. You are here: boßte de nuit saint françois; constructeur maison guyane; comment calculer 2 3 d'une somme ; Réponse : 6. Point hors d'un convexe .

J’ai croisĂ© cette question sur un groupe de discussion et je trouve que c’est un bon algorithme Ă  travailler ensemble. Commencez par chercher Ă  y rĂ©pondre par vous-mĂȘme. ArrĂȘtez lĂ  votre lecture, prenez une feuille et un stylo, et tentez de calculer la somme des entiers pairs et le produit des entiers impairs d’un tableau que l’on vous a donnĂ© en entrĂ©e. Vous avez un algo ? Si c’est trop dur du premier coup, n’hĂ©sitez pas Ă  dĂ©couper le problĂšme en 2, calculer la somme des entiers paires, et ensuite, modifiez l’algo pour calculer aussi le produit des entiers impairs. D’ailleurs, c’est ce que nous allons faire. 😊 Si vous souhaitez apprendre, je vous recommande de lire cet article pas Ă  pas, en tentant Ă  chaque fois de faire l’algorithme par vous-mĂȘme. Autant vous ne pouvez pas deviner comment faire tant que vous ne l’avez pas dĂ©jĂ  vu 1 ou 2 fois. Autant vous ne serez jamais autonome si vous ne cherchez pas au maximum Ă  faire par vous-mĂȘme dĂšs que c’est possible ! Pratiquez, pratiquez, pratiquez ! N’oubliez pas ce vieil adage c’est en forgeant que l’on devient forgeron ! ». Tous les codes indiquĂ©s dans cet article sont en pseudo-code. Je mettrais plus tard un exemple en Java et/ou dans le langage de votre choix. Calcul de la somme des entiers pairs Imaginons que nous ayons un tableau nommĂ© nombresEntiers » dont nous connaissons la taille tailleNombresEntiers ». Comment calculer cette somme ? De maniĂšre logique, sans entrer dans le verbiage informatique, nous devons Consulter chaque nombre un par un Reconnaitre s’il s’agit d’un nombre pair ou d’un nombre impair S’il s’agit d’un nombre pair, je l’ajoute Ă  la somme des nombres pairs que je calcule petit Ă  petit imaginez une feuille oĂč je somme petit Ă  petit tous les nombres pairs que je rencontre. Une fois tous les nombres analysĂ©s, nous avons la somme, il suffit de l’afficher. Pour convertir cela sous forme informatique, voici ce que je dois faire 1 Consulter tous les nombres un par un. Il nous faut itĂ©rer sur le tableau avec une boucle Pour. Notez bien que toutes les boucles peuvent faire l’affaire ! Les boucles Pour, Repeter, Faire
 Repeter sont toutes Ă©quivalentes Ă  quelques diffĂ©rences prĂšs. En tout cas il est toujours possible de passer de l’une Ă  l’autre. Nous utilisons Pour dans ce cas, car c’est la boucle la plus adaptĂ©e au parcours de tableau. Toutes les informations sont rĂ©unies sur la premiĂšre ligne, c’est plus lisible, tout le monde utilise Pour pour un parcours de tableau. Pourint i = 0 ; i< tailleNombresEntiers ; i++ faire // Votre code ici FinPour Pour information, voici les correspondances entre les boucles en pseudo-code français et les boucles en informatique Pour for Repeter while Faire 
 repeter do 
 while 2 Comment reconnaĂźtre un nombre pair ? Pour cela nous allons utiliser l’opĂ©ration modulo. Le modulo nous donne le reste de la division entiĂšre entre deux nombres lien wikipedia. C’est une trĂšs bonne technique pour identifier des cycles. Ici nous cherchons les nombres pairs, donc tous ceux qui sont divisibles par 2. Ces nombres auront donc un reste de 0. Quelques exemples pour vous en convaincre 6 modulo 2 = 0 quand on divise 6 par 2 en division entiĂšre, il reste rien Ă  diviser, car 6 est directement divisible par 2 cela donne un quotient de 3 attention, module est le reste de la division entiĂšre, pas le rĂ©sultat ! C’est uniquement ce qu’il reste, qui n’a pas pu ĂȘtre divisĂ©. 7 modulo 2 = 1 quand je divise 7 par 2 en division entiĂšre il me reste 1, car 7 n’est pas directement divisible par 2 en division entiĂšre. C’est 6 qui l’est. Il reste donc 1 qui correspond Ă  l’écart entre 7 et 6. 12 modulo 2 = 0 17 modulo 2 = 1 Vous pouvez explorer la fonction modulo par vous-mĂȘme en utilisant la calculatrice intĂ©grĂ©e de Google Pour mieux comprendre l’immense intĂ©rĂȘt des modulos pour identifier des cycles en informatique, testez des modulos par 5, par 7, par 8 
 7 modulo 5 = 2 8 modulo 5 = 3 9 modulo 5 = 4 10 modulo 5 = 0 Vous ĂȘtes maintenant capable d’identifier des cycles de 5, ou des cycles de toute autre nature 😊. Nous savons identifier les nombres pairs, il nous reste Ă  le faire dans un test pour conditionner le code permettant de les sommer Si nombresEntiers[i] modulo 2 == 0 Alors // votre code ici FinSi Testez ce code avec un affichage, vous verrez qu’il n’affiche que les nombres pairs. 😊 3 Sommer les nombres pairs Nous savons parcourir le tableau et identifier tous les cas de nombres pairs pour exĂ©cuter du code spĂ©cifique seulement dans ces cas-lĂ . Quel code pouvons-nous mettre pour calculer la somme ? En informatique nous procĂ©dons comme dans la vraie vie. Nous commençons par faire la somme entre les deux premiers, puis entre le rĂ©sultat et le nombre suivant, et ainsi de suite jusqu’au dernier nombre Ă  ajouter. Ensuite, nous faisons cela petit Ă  petit en mĂȘme temps que la boucle parcourt le tableau et identifie des nombres pairs. Ajoutez une variable sommeDesNombresPairs » juste avant la boucle, et l’initialiser Ă  0 . Oui, au dĂ©but, je n’ai sommĂ© aucun nombre pair, donc la somme vaut 0. Ensuite, Ă  chaque tour de boucle, quand j’ai identifiĂ© un nombre pair, je peux simplement faire la somme entre ce nombre et ma variable sommeDesNombresPairs et je stocke le rĂ©sultat dans cette mĂȘme variable. Le code pour faire cela est tout simple sommeDesNombresPairs = nombresEntiers[i] + sommeDesNombresPairs ; Cela donne le code complet suivant Pourint i = 0 ; i< tailleNombresEntiers ; i++ faire Si nombresEntiers[i] modulo 2 == 0 Alors sommeDesNombresPairs = nombresEntiers[i] + sommeDesNombresPairs; FinSi FinPour 4 À la fin, afficher. Il s’agit de la partie la plus simple, tout le travail a dĂ©jĂ  Ă©tĂ© fait en cumulant petit Ă  petit la somme des entiers pairs dans sommeDesNombresPairs ! 😊 Il suffit maintenant de l’afficher juste aprĂšs la fermeture de la boucle AffichersommeDesNombresPairs ; Calcul du produit des entiers impairs Stoppez lĂ  votre lecture ! Tentez de le faire par vous-mĂȘme, nous avons dĂ©jĂ  vu tout ce qui vous permettait de rĂ©pondre Ă  cette question. Car au final, qu’est-ce qui diffĂ©rencie cette question de la prĂ©cĂ©dente ? Il faut identifier les nombres impairs. Il faut en faire le produit. Vous avez dĂ©jĂ  les briques vous permettant de rĂ©pondre Ă  ces questions. Allez-y, lancez-vous ! Toujours des questions ? Voici un peu d’aide 1 Identifier les nombres impairs Pour cela, il suffit d’ajouter un test portant toujours sur le modulo. Au lieu de tester si le reste de la division entiĂšre par 2 est de 0, vous allez tester s’il est de 1. En effet, tous les nombres impairs auront un reste de division entiĂšre de 1. Voici le code Si nombresEntiers[i] modulo 2 == 1 Alors // le code ici FinSi Notez que vu que les entiers sont soit pairs soit impairs, nous pourrions trĂšs bien ajouter une clause sinon sur le test des cas pairs. 2 Calculer le produit des nombres impairs Surtout ne pas toucher Ă  la variable que nous avions créée. Il faut en faire une autre dans laquelle nous allons progressivement calculer le produit. Appelons la produitDesNombresImpairs. Le calcul, de maniĂšre similaire, va ĂȘtre de faire la multiplication entre le nombre impair trouvĂ© et produitDesNombresImpairs. Ensuite, stocker le rĂ©sultat de cette multiplication dans produitDesNombresImpairs lui-mĂȘme pour en tenir compte par la suite. Voici le pseudo-code produitDesNombresImpairs = nombresEntiers[i] * produitDesNombresImpairs; En conclusion Nous avons vu quelques points rĂ©currents des algorithmes. La fonction modulo pour identifier les cycles et le calcul progressif d’une somme ou d’un produit en utilisant une variable créée pour l’occasion. J’espĂšre que cet article vous aide Ă  dĂ©couvrir la programmation et Ă  comprendre comment crĂ©er un algorithme. N’hĂ©sitez pas Ă  le partager s’il peut ĂȘtre utile Ă  d’autres personnes. Si vous voulez que je mette ce code dans un langage particulier, indiquez-le-moi dans les commentaires.

kasom- 3 mars 2018 à 15:51. Bonjour, je voudrais savoir calculer les millieme j'ai 394 millieme la note et de 500 euro l'operation que l'on doit faire pour savoir combien je dois payer a la copropriete nous somme 4proprio en esperant avoir une réponse rapidememt recevez mes salutation. Répondre.

Un calcul ratio en ligne vous aide Ă  dĂ©terminer les ratios identiques en donnant trois parties sur quatre de deux ratios. En outre, ce calculateur de ratios fonctionne mieux pour trouver la cinquiĂšme et sixiĂšme partie des trois ratios en donnant quatre parties. Notre solveur de ratios effectue les sept opĂ©rations suivantes sur deux et trois ratios. Trouver l’équivalent d’un ratio Faire un rapport plus grand RĂ©duisez le ratio Simplifier un ratio Simplifier un rapport en une forme 1 n m» Simplifier un rapport sous la forme n 1 m» Simplifier un rapport sous la forme n m 1» Avant d’utiliser ce calculer un ratio, nous devons connaĂźtre la dĂ©finition de base, la formule du ratio et comment trouver le ratio manuellement. Continuez Ă  lire pour avoir une brĂšve connaissance sur la façon de faire des ratios. De plus, vous pouvez essayer notre calculateur de proportion en ligne qui vous aide Ă  rĂ©soudre facilement les problĂšmes de proportion avec diffĂ©rentes mĂ©thodes. Continuer Ă  lire! Qu’est-ce qu’un ratio? Elle peut ĂȘtre dĂ©finie comme la comparaison entre les deux nombres particuliers, trĂšs souvent reprĂ©sentĂ©s sous forme de fractions». Simplement, il affiche combien une partie du rapport est contenue dans l’autre partie. Notre chercheur de ratio a Ă©tĂ© dĂ©veloppĂ© pour calculer ce contraste et dĂ©terminer la relation entre les nombres. Comment calculer un ratio Ă©tape par Ă©tape Le rapport comprend deux parties, le numĂ©rateur et le dĂ©nominateur exactement comme la fraction. Si nous avons les deux ratios et que nous voulons calculer le ratio pour la valeur manquante dans le ratio, suivez simplement les Ă©tapes indiquĂ©es Écrivez les ratios sous forme de fraction et mettez n’importe quelle variable x ou y dans la valeur manquante DĂ©finissez la fraction Ă©gale l’une Ă  l’autre En utilisant la multiplication croisĂ©e, gĂ©nĂ©rez une Ă©quation RĂ©soudre la variable manquante Enfin, essayez le calcul ratio pour vĂ©rifier votre rĂ©ponse Vous pouvez obtenir de l’aide sur notre calculateur de fractions en ligne pour ajouter, soustraire, multiplier ou diviser les deux ou trois fractions. Ici, nous avons un exemple manuel pour clarifier la comprĂ©hension Exemple Nous avons 6 tranches de pizza dont 2 sont mangĂ©es. Maintenant, nous voulons savoir combien de tranches peuvent ĂȘtre mangĂ©es sur les 54 tranches de pizza? Solution Étape 1 Écrivez le rapport sous forme de fraction comme suit Tranche mangĂ©e / tranche totale = 2/6 Tranche mangĂ©e / Tranche totale = x / 54 Étape 2 DĂ©finissez les fractions Ă©gales les unes aux autres 2/6 = x / 54 Étape 3 Par multiplication croisĂ©e 6x = 54 * 2 x = 54 * 2/6 x = 108/6 x = 18 Nous vous encourageons Ă  utiliser notre calculer un ratio si vous envisagez de rĂ©soudre les ratios complexes de grands nombres. Comment utiliser le calcul ratio en ligne Notre calculatrice est un outil prĂ©cis pour simplifier, et pour trouver la valeur inconnue dans le rapport. Il vous suffit de vous en tenir aux points suivants pour calculer les ratios Glissez dessus! Contributions Tout d’abord, appuyez sur l’onglet pour choisir le nombre de ratios que vous souhaitez effectuer les calculs. C’est soit A B ou A B C TrĂšs ensuite, sĂ©lectionnez la mĂ©thode de calcul dans la liste dĂ©roulante de cette calculatrice Ensuite, entrez dans les champs en fonction des paramĂštres d’entrĂ©e sĂ©lectionnĂ©s Une fois que vous avez terminĂ©, appuyez sur le bouton de calcul Les sorties La calculatrice affiche Valeur s manquante s Simplification du ratio ReprĂ©sentation visuelle du ratio camembert Remarque Ce calculateur ratio ne vous donnera pas les valeurs dont vous n’avez pas besoin; il vous donnera la sortie en fonction des paramĂštres d’entrĂ©e. Qu’est-ce que le nombre d’or? Lorsque les deux quantitĂ©s ont le mĂȘme rapport que le rapport de leur somme Ă  la plus grande des deux quantitĂ©s, alors le rapport est appelĂ© nombre d’or. Par exemple, les quantitĂ©s exprimĂ©es en x & y, alors le nombre d’or entre x & y est x + y / x = x / y Note de fin Heureusement, vous savez comment rĂ©soudre les ratios Ă  la main et avec la calculatrice. Le ratio est utilisĂ© partout, de la cuisine Ă  la construction de la maison. Il est trĂšs utile pour l’éducation K-12 et dans de nombreux autres domaines de la science comme la mĂ©canique, les entreprises et les comptables, l’alimentation et bien d’autres. Quand il s’agit de rĂ©soudre les ratios pour des nombres complexes, utilisez simplement le calcul ratio en ligne qui vous aide Ă  trouver la valeur manquante dans le ratio et simplifiez le ratio comme vous le souhaitez. Other Langauges Ratio Calculator, Oran Hesaplama, Kalkulator Rasio, Kalkulator WspóƂczynnika, VerhĂ€ltnis Berechnen, æŻ”çŽ‡ èšˆçź—, ëč„ìœšêł„ì‚°êž°, VĂœpočet Poměru, Calculadora RazĂŁo, Calcolo Rapporto, ĐšĐ°Đ»ŃŒĐșŃƒĐ»ŃŃ‚ĐŸŃ€ ĐĄĐŸĐŸŃ‚ĐœĐŸŃˆĐ”ĐœĐžĐč, ۭ۳ۧۚ Ű§Ù„Ù†ŰłŰšŰ©, Suhde Laskuri, Forhold Lommeregner.
Sommeautomatique de plusieurs colonnes. 1. Sélectionnez plusieurs colonnes que vous souhaitez utiliser pour la somme automatique comme capture d'écran de gauche affichée. 2. Appliquez la fonction AutoSum en appuyant sur autre + = touches simultanément. Notes: Vous pouvez également appliquer la fonction Somme automatique en cliquant sur
MĂ©thodes agiles » Comment calculer le nombre de sprints nĂ©cessaires sur un projet ?Calculer le nombre de sprints nĂ©cessaires pour aller au bout d'un projet est intĂ©ressant pour une question de permet au client d'avoir une date d'atterrissage estimĂ©e pour le projet agile, et Ă  l'Ă©quipe Scrum de savoir quelle charge de travail elle peut absorber sur un allons voir dans cet article comment estimer le nombre de sprints nĂ©cessaires pour rĂ©aliser un projet agile, exemple Ă  l' rappels de notionAvant de commencer, il est nĂ©cessaire de connaĂźtre et comprendre les notions agiles ci-dessous, vu que nous allons nous baser dessus pour la suite de l' un indicateur de mesure qui indique combien de points d'efforts l'Ă©quipe est en capacitĂ© de fournir sur chaque sprint. Elle se mesure Ă  la fin de chaque aller + loin Consultez cet article pour tout savoir sur la vĂ©locitĂ©, pourquoi cet indicateur est important, et comment le pointsLes story points, ou points d'efforts, remplacent les estimations jours-homme dans les mĂ©thodologies de gestion de projet classiques. Ils permettent d'estimer l'effort nĂ©cessaire pour rĂ©aliser un travail donnĂ©, et se mesure le plus souvent via la suite de Fibonacci, ou les tailles de backlogLe sprint backlog est l'ensemble du travail Ă  rĂ©aliser dans le cadre d'un sprint, sĂ©lectionnĂ© par l'Ă©quipe de dĂ©veloppement afin d'atteindre un objectif de sprint of doneLa definition of done, ou dĂ©finition de fini, est une checklist qui indique ce qu'est pour l'Ă©quipe un travail vraiment terminĂ© Ă  100%. Tous les Ă©lĂ©ments du sprint backlog doivent ĂȘtre terminĂ©s selon cette dĂ©finition pour ĂȘtre livrĂ©s aux parties backlogLe product backlog est une liste ordonnĂ©e des Ă©lĂ©ments que l'on aimerait bien dĂ©velopper dans de futurs sprints, priorisĂ©s en fonction de leur valeur. Le product backlog est vivant, il Ă©merge au fil du temps, et Ă©volue estimer le nombre de sprints nĂ©cessaires pour un projet agile ?Calculer le nombre de sprints nĂ©cessaires pour traiter l'intĂ©gralitĂ© du product backlog et rĂ©aliser le produit est relativement simple, Ă  condition de respecter les Ă©tapes suivantes Tous les Ă©lĂ©ments du product backlog doivent ĂȘtre permet d'estimer l'effort nĂ©cessaire pour l'Ă©quipe afin d'aller au bout du backlog de produit. Vous pouvez utiliser pour cela le planning vĂ©locitĂ© de l'Ă©quipe doit ĂȘtre Ă  l'article sur la vĂ©locitĂ© agile pour savoir comment la une division la somme des estimations des Ă©lĂ©ments du product backlog par la vĂ©locitĂ© de l' au chiffre le rĂ©sultat au chiffre supĂ©rieur, et vous obtenez une assez bonne idĂ©e du nombre de sprints nĂ©cessaires pour rĂ©aliser votre Ă  l'esprit qu'il s'agit d'une estimation, pas d'un product backlog peut Ă©voluer Ă  la hausse ou Ă  la baisse entre temps, cette estimation n'est donc pas gravĂ©e dans le Scrum s'engage sur la qualitĂ©, Ă  savoir le respect de la definition of done, et sur le fait de livrer un incrĂ©ment Ă  la fin de chaque sprint. Elle ne s'engage pas sur la quantitĂ© de travail Ă  accomplir, ni sur le nombre de sprints et cas concretImaginons que l'Ă©quipe Scrum a eu une vĂ©locitĂ© de 42, 36, et 41 sur les trois derniers sprints. La vĂ©locitĂ© moyenne est donc de VĂ©locitĂ© moyenne = 42 + 36 + 41 / 3 = 39,66, soit de dĂ©veloppement est donc en capacitĂ© de fournir l'Ă©quivalent de 40 points d'efforts au cours d'un sprint. Elle peut donc absorber dans son sprint backlog des user stories dont la somme reprĂ©sente 40 story maintenant que la somme des Ă©lĂ©ments dans le product backlog reprĂ©sente 788 points d'efforts. Le nombre de sprints nĂ©cessaires sur ce projet serait donc de Nombre de sprints = 788 / 40 = 19,7, soit 20 sprints une fois l'arrondi la vĂ©locitĂ© actuelle, l'Ă©quipe Scrum aura donc besoin de 20 sprints pour aller au bout du product backlog donne une bonne idĂ©e, mais on peut encore affiner cette estimation en calculant la capacitĂ© d'un effet, on a considĂ©rĂ© dans notre calcul que les sprints Ă©taient Ă©gaux 5 jours ouvrĂ©s, sans jours fĂ©riĂ©s, sans absences dans l'Ă©quipe. Mais dans la rĂ©alitĂ©, il en est tout est l'intĂ©rĂȘt de prĂ©dire le nombre de sprints ?"Je croyais que l'agilitĂ©, c'Ă©tait arrĂȘter de vouloir tout prĂ©voir, et de travailler en itĂ©rations courtes jusqu'Ă  avoir le produit final. Quel est l'intĂ©rĂȘt alors d'un tel calcul ?"Calculer le nombre de sprints nĂ©cessaires pour rĂ©aliser le product backlog est utile notamment pour construire des roadmaps produit qu'on puisse s'en passer, les roadmaps sont souvent attendues par les directions et managers hiĂ©rarchiques qui n'ont pas encore rĂ©ussi Ă  adopter complĂštement l'Ă©tat d'esprit agile. Danschacun des cas suivants, Ă©crire l'expression numĂ©rique puis effectuer le calcul: 1- L'opposĂ© de la diffĂ©rence entre 5 et 3 2- Le quotient de 4 par l'inverse de 3 3- La somme de 11 et du produit de 2 par 15 4- Le produit de la diffĂ©rence entre 13 et 4 par 5 5- Le quotient de la somme de 15 et 5 par la diffĂ©rence entre 6 et 4
Manipulation des symboles sommes et produits EnoncĂ© Pour chaque question, une seule rĂ©ponse est juste. Laquelle? La somme $\sum_{k=0}^n 2$ $$\mathbf a.\textrm{ n'a pas de sens}\ \ \mathbf b. \textrm{ vaut }2n+1\ \ \mathbf c.\ \textrm{vaut }2n.$$ La somme $\sum_{p=0}^{2n+1}-1^p$ est Ă©gale Ă  $$\mathbf a.\ 1\ \ \mathbf b.\ -1\ \ \mathbf c.\ 0.$$ Le produit $\prod_{i=1}^n 5a_i$ est Ă©gal Ă  $$\mathbf a.\ 5\prod_{i=1}^n a_i\ \ \mathbf b.\ 5^n\prod_{i=1}^n a_i\ \ \mathbf c.\ 5^{n-1}\prod_{i=1}^n a_i.$$ EnoncĂ© Écrire Ă  l'aide du symbole somme les sommes suivantes $2^3+2^4+\cdots+2^{12}$. $\frac 12+\frac24+\frac{3}8+\cdots+\frac{10}{1024}$. $2-4+6-8+\cdots+50$. $1-\frac 12+\frac13-\frac 14+\cdots+\frac1{2n-1}-\frac{1}{2n}$. EnoncĂ© Écrire Ă  l'aide du symbole $\sum$ les sommes suivantes $n+n+1+\dots+2n$; $\frac{x_1}{x_n}+\frac{x_2}{x_{n-1}}+\cdots+\frac{x_{n-1}}{x_2}+\frac{x_n}{x_1}$. EnoncĂ© Pour $n\geq 1$, on pose $u_n=\sum_{k=n}^{2n}\frac 1k$. Simplifier $u_{n+1}-u_n$ puis Ă©tudier la monotonie de $u_n$. EnoncĂ© Soit $n\geq 1$. DĂ©montrer que $$\sum_{k=n+1}^{2n-1}\ln\left\sin\left\frac{k\pi}{2n}\right\right=\sum_{k=1}^{n-1} \ln\left\sin\left\frac{k\pi}{2n}\right\right.$$ EnoncĂ© Calculer la somme $\sum_{k=1}^n \left\frac 1k-\frac1{n+1-k}\right$. EnoncĂ© Simplifier les sommes et produits suivants $$\begin{array}{lcl} \mathbf 1.\ \sum_{k=1}^n \ln\left1+\frac 1k\right&\quad\quad&\mathbf 2.\ \prod_{k=2}^n \left1-\frac1{k^2}\right\\ \mathbf 3.\ \sum_{k=0}^n \frac{1}{k+2k+3}. \end{array}$$ EnoncĂ© DĂ©terminer deux rĂ©els $a$ et $b$ tels que, pour tout $k\in\mathbb N$, $$\frac 1{k+1k+3}=\frac a{k+1}+\frac b{k+3}.$$ En dĂ©duire la valeur de la somme $$S_n=\sum_{k=0}^n \frac{1}{k+1k+3}.$$ EnoncĂ© En utilisant une somme tĂ©lescopique, calculer $\sum_{k=1}^n k\cdot k!$. EnoncĂ© DĂ©terminer une suite $u_k$ telle que, pour tout $k\geq 0$, on ait $$u_{k+1}-u_k=k+2 2^k.$$ En dĂ©duire $\sum_{k=0}^{n}k+22^k.$ EnoncĂ© DĂ©montrer que, pour tout $n\in\mathbb N^*$, on a $$n+1!\geq\sum_{k=1}^n k!\quad.$$ EnoncĂ© Soit $n\geq 1$ et $x_1,\dots,x_n$ des rĂ©els vĂ©rifiant $$\sum_{k=1}^n x_k=n\textrm{ et }\sum_{k=1}^n x_k^2=n.$$ DĂ©montrer que, pour tout $k$ dans $\{1,\dots,n\}$, $x_k=1$. Calcul de sommes et de produits EnoncĂ© Pour $n\in\mathbb N^*$, on note $$a_n=\sum_{k=1}^n k,\ b_n=\sum_{k=1}^n k^2\textrm{ et }c_n=\sum_{k=1}^n k^3.$$ DĂ©montrer que $\displaystyle a_n=\frac{nn+1}2$, que $\displaystyle b_n=\frac{nn+12n+1}6$ et que $c_n=a_n^2$. EnoncĂ© Calculer les somme suivantes $A_n=\sum_{k=1}^n 3$. $B_n=\sum_{k=1}^n A_k$. $S_n=\sum_{k=0}^{n}2k+1$. EnoncĂ© Calculer les sommes suivantes $S=\frac{1}{2^{10}}+\frac{1}{2^{20}}+\frac{1}{2^{30}}+\cdots+\frac{1}{2^{1000}}$. $T_n=\sum_{k=0}^n \frac{2^{k-1}}{3^{k+1}}$. EnoncĂ© Calculer la somme suivante $$\sum_{k=1}^n n-k+1.$$ EnoncĂ© Calculer la somme suivante $$\sum_{k=-5}^{15} k10-k.$$ EnoncĂ© Soit $n\in\mathbb N$. Calculer $A_n=\sum_{k=2n+1}^{3n}2n$. Calculer $B_n=\sum_{k=n}^{2n}k$. En dĂ©duire la valeur de $S_n=\sum_{k=n}^{3n}\mink,2n$. EnoncĂ© Pour $n\geq 1$, on pose $u_n=\frac{1}{n^2}+\frac{2}{n^2}+\cdots+\frac{n}{n^2}$. Calculer explicitement $u_n$, puis en dĂ©duire la limite de la suite $u_n$. EnoncĂ© Pour $n\in\mathbb N^*$ et $x\in\mathbb R$, on note $$P_nx=\prod_{k=1}^n \left1+\frac xk\right.$$ Que valent $P_n0$, $P_n1$, $P_n-n$? DĂ©montrer que pour tout rĂ©el non-nul $x$, on a $$P_nx=\frac {x+n}xP_nx-1.$$ Pour $p\in\mathbb N^*$, Ă©crire $P_np$ comme coefficient du binĂŽme. EnoncĂ© Soit pour $n\in\mathbb N$, $u_n=-2^n$. Calculer les sommes suivantes $$\sum_{k=0}^{2n} u_{k};\quad \sum_{k=0}^{2n+1} u_{k};\quad \sum_{k=0}^{n} u_{2k};\quad \sum_{k=0}^{2n} u_{k}+n;\quad \left\sum_{k=0}^{2n} u_{k}\right+n;\quad \sum_{k=0}^{n} u_{k+n};\quad \sum_{k=0}^{n} u_{kn}.$$ EnoncĂ© Simplifier la somme $\sum_{k=1}^{2n}-1^k k$ en faisant des sommations par paquets. Montrer par rĂ©currence que pour tout $n\in\mtn^*$, on a $$S_n=\sum_{k=1}^n -1^k k=\frac{-1^n 2n+1-1}{4}.$$ Retrouver le rĂ©sultat prĂ©cĂ©dent. EnoncĂ© Soit $x\in\mathbb R$ et $n\in\mathbb N^*$. Calculer $S_nx=\sum_{k=0}^n x^k.$ En dĂ©duire la valeur de $T_nx=\sum_{k=0}^n k x^k.$ EnoncĂ© Soient $a_n_{n\in\mathbb N}$ et $B_n_{n\in\mathbb N}$ deux suites de nombres complexes. On dĂ©finit deux suites $A_n_{n\in\mathbb N}$ et $b_n_{n\in\mathbb N}$ en posant $$A_n=\sum_{k=0}^n a_k,\quad\quad b_n=B_{n+1}-B_n.$$ DĂ©montrer que $\sum_{k=0}^n a_kB_k=A_n B_n-\sum_{k=0}^{n-1}A_kb_k.$ En dĂ©duire la valeur de $\sum_{k=0}^n 2^kk$. Sommes doubles EnoncĂ© Soit $a_{i,j}_{i,j\in\mathbb N^2}$ une suite double de nombres rĂ©els. Soit $n$ et $m$ deux entiers naturels. Intervertir les sommes doubles suivantes $S_1=\sum_{i=0}^n \sum_{j=i}^n a_{i,j}$; $S_2=\sum_{i=0}^n \sum_{j=0}^{n-i}a_{i,j}$; $S_3=\sum_{i=0}^n \sum_{j=i}^m a_{i,j}$ oĂč on a supposĂ© $n\leq m$. EnoncĂ© Calculer les sommes doubles suivantes $\sum_{1\leq i,j\leq n}ij$. $\sum_{1\leq i\leq j\leq n}\frac ij$. EnoncĂ© Pour $n\geq 1$, on pose $S_n=\sum_{k=1}^n \frac 1k$ et $u_n=\sum_{k=1}^n S_k$. DĂ©montrer que, pour tout $n\geq 1$, $u_n=n+1S_n-n$. EnoncĂ© En Ă©crivant que $$\sum_{k=1}^n k2^k=\sum_{k=1}^n \sum_{j=1}^k 2^k,$$ calculer $\sum_{k=1}^n k2^k$. EnoncĂ© Pour $n\in\mathbb N$, on note $$a_n=\sum_{k=1}^n k,\ b_n=\sum_{k=1}^n k^2\textrm{ et }c_n=\sum_{k=1}^n k^3.$$ Pour cet exercice, on admettra que $\displaystyle a_n=\frac{nn+1}2$, que $\displaystyle b_n=\frac{nn+12n+1}6$ et que $c_n=a_n^2$. Calculer $\displaystyle \sum_{1\leq i\leq j\leq n} ij$. Calculer $\displaystyle \sum_{i=1}^n\sum_{j=1}^n \mini,j$. Coefficients binĂŽmiaux - formule du binĂŽme EnoncĂ© Soient $n,p\geq 1$. DĂ©montrer que $$\binom{n-1}{p-1}=\frac pn \binom np.$$ Pour $n\in\mathbb N$ et $a,,b$ rĂ©els non nuls, simplifier les expressions suivantes $$\mathbf 1.\ n+1!-n!\ \quad\mathbf 2.\ \frac{n+3!}{n+1!}\ \quad\mathbf 3.\ \frac{n+2}{n+1!}-\frac 1{n!}\ \quad\mathbf 4.\ \frac{u_{n+1}}{u_n}\textrm{ oĂč }u_n=\frac{a^n}{n!b^{2n}}.$$ EnoncĂ© Soit $n\in\mathbb N$. Pour quels entiers $p\in\{0,\dots,n-1\}$ a-t-on $\binom np<\binom n{p+1}$. Soit $p\in\{0,\dots,n\}$. Pour quelles valeurs de $q\in\{0,\dots,n\}$ a-t-on $\binom np=\binom nq$? EnoncĂ© Soit $p\geq 1$. DĂ©montrer que $p!$ divise tout produit de $p$ entiers naturels consĂ©cutifs. EnoncĂ© DĂ©velopper $x+1^6$, $x-1^6$. DĂ©montrer que, pour tout entier $n$, on a $\sum_{p=0}^n \binom np=2^n.$ DĂ©montrer que, pour tout entier $n$, on a $\sum_{p=0}^n \binom np 2^p=3^n$. DĂ©montrer que, pour tout entier $n$, on a $\sum_{k=1}^{2n}\binom{2n}k -1^k 2^{k-1}=0.$ EnoncĂ© Quel est le coefficient de $a^2b^4c$ dans le dĂ©veloppement de $a+b+c^7$? Calculer la somme $$\binom{n}0+\frac12\binom{n}1+\dots+\frac{1}{n+1}\binom{n}{n}.$$ Soient $p,q,m$ des entiers naturels, avec $q\leq p\leq m$. En dĂ©veloppant de deux façons diffĂ©rentes $1+x^m$, dĂ©montrer que $$\binom{m}{p}=\binom{m-q}p+\binom{q}1\binom{m-q}{p-1}+\dots+\binom{q}k\binom{m-q}{p-k}+\dots+\binom{m-q}{p-q}.$$ EnoncĂ© Soient $n,p$ des entiers naturels avec $n\geq p$. DĂ©montrer que $$\sum_{k=p}^n \dbinom{k}{p}=\dbinom{n+1}{p+1}.$$ EnoncĂ© Calculer $1+i^{4n}$. En dĂ©duire les valeurs de $$\sum_{p=0}^{2n}-1^p \dbinom{4n}{2p}\textrm{ et }\sum_{p=0}^{2n-1}-1^p \dbinom{4n}{2p+1}.$$ EnoncĂ© Soient $m,k$ deux entiers naturels. Justifier que $$\binom{m+k}{m}=\binom{m+k+1}{m+1}-\binom{m+k}{m+1}.$$ En dĂ©duire, pour tous entiers naturels $m,n\in\mathbb N^*$, la valeur de $$S=\sum_{k=0}^n \binom{m+k}{m}.$$ En dĂ©duire celle de $$P=\sum_{k=0}^n \left\prod_{p=1}^mk+p\right.$$ EnoncĂ© Quel est le coefficient de $x^ay^bz^c$ dans le dĂ©veloppement de l'expression $x+y+z^n$? EnoncĂ© Calculer les sommes suivantes $${S}_{n}=\sum^{n}_{k=0} -1^k\binom{n}{k}^{2}\textrm{ et } {T}_{n}=\sum^{n}_{k=0}k\binom{n}{k}^{2}.$$ EnoncĂ© L'objectif de l'exercice est de dĂ©montrer la surprenante! formule suivante $$\sum_{k=1}^n \binom nk\frac{-1^{k+1}}k=\sum_{k=1}^n\frac 1k.$$ Soit $x$ un rĂ©el non nul. DĂ©montrer que $$\frac{1-1-x^n}{x}=\sum_{p=0}^{n-1}1-x^p.$$ On pose pour $x\in\mathbb R$, $$fx=\sum_{k=1}^n \binom nk \frac{-1^k}k x^k.$$ DĂ©montrer que, pour $x\in\mathbb R$, on a $$f'x=-\sum_{p=0}^{n-1}1-x^p.$$ Conclure. EnoncĂ© Le but de l'exercice est de dĂ©montrer que l'Ă©quation $x^2-2y^2=1$ admet une infinitĂ© de solutions avec $x,y$ des entiers naturels. Soit $n\geq 1$. DĂ©montrer qu'il existe deux entiers $x_n$ et $y_n$ tels que $3+2\sqrt 2^n =x_n+\sqrt 2 y_n.$ Exprimer $x_{n+1}$ et $y_{n+1}$ en fonction de $x_{n}$ et $y_{n}$. En dĂ©duire que les suites $x_n$ et $y_n$ sont strictement croissantes. DĂ©montrer le rĂ©sultat annoncĂ©.
Commentcalculer une augmentation de 3%? Calcul de la valeur de la majoration Elle se calcule en additionnant le prix de départ et la majoration. Ce qui est écrit : Prix Final =

Pour exprimer le ratio entre une valeur totale qui reprĂ©sente un ensemble et une partie de cet ensemble valeur partielle, la formule de base pour le calcul d’un pourcentage est la suivante Pourcentage % = 100 x Valeur partielle / Valeur totale Si la valeur partielle est supĂ©rieure Ă  la valeur totale sur-ensemble, alors le pourcentage sera supĂ©rieur Ă  100%. A partir de cette formule de base les diffĂ©rentes utilisations du calcul de pourcentage sont les suivantes Calculer un pourcentage correspondant au ratio entre deux nombres. Calculer le pourcentage reprĂ©sentĂ© par une valeur calcul de la valeur partielle Retrouver la valeur totale Ă  partir d’une valeur partielle et d’un pourcentage Appliquer un pourcentage cas d’une diminution, remise ou rĂ©duction Appliquer un pourcentage cas d’une augmentation Calculer un taux de variation en % Ces diffĂ©rents cas d’utilisations sont expliquĂ©s en dĂ©tail et complĂ©tĂ©s par des convertisseurs automatiques dans les paragraphes ci-dessous. Vous trouverez Ă©galement dans chaque paragraphe et en fin d’article des exemples et exercices concrets sur les calculs de pourcentage. Calcul de pourcentage Le calcul de pourcentage permet d’exprimer le ratio en % entre deux nombres La valeur totale qui reprĂ©sente un ensemble. La valeur partielle qui reprĂ©sente un sous-ensemble de cet ensemble. Le convertisseur suivant permet de calculer le ratio entre deux nombres modifiez simplement une des valeurs, le pourcentage est calculĂ© automatiquement avec une prĂ©cision de 4 chiffres aprĂšs la virgule. Ce convertisseur est basĂ© sur la formule suivante Pourcentage % = 100 x Valeur partielle / Valeur totale Exemple de calcul de pourcentage Dans une classe de 30 Ă©lĂšves, 12 sont des filles. La proportion de filles dans cette classe est donc de Pourcentage de filles dans la classe = 100 x 12 / 30 = 40 % Calcul de la valeur partielle Le calculateur suivant permet de trouver la valeur partielle correspondant Ă  un pourcentage donnĂ© d’un total. Modifiez simplement la valeur totale ou le pourcentage, la valeur rĂ©sultante est calculĂ©e automatiquement avec une prĂ©cision de 4 chiffres aprĂšs la virgule. Ce convertisseur est basĂ© sur la formule suivante Valeur partielle = Pourcentage x Valeur totale / 100 Exemple d’application Le prix TTC d’un article est de 60 Euros. La taux de TVA Ă©tant de 20%, la taxe correspond donc Ă  Montant TVA = 20 x 60 / 100 = 12 Euros Trouver la valeur totale Le calculateur ci-dessous permet de retrouver la valeur totale Ă  partir d’un pourcentage donnĂ© et de la valeur partielle qu’il reprĂ©sente. Il correspond Ă  un calcul de pourcentage inversĂ©. Modifiez l’un des champs, le rĂ©sultat est calculĂ© automatiquement. La formule permettant de retrouver la valeur totale est la suivante Valeur totale = 100 x Valeur partielle / Pourcentage Exemple d’application La valeur de cette voiture a baissĂ© de 1400 Euros en un an, soit 7%. Le prix payĂ© pour la voiture neuve Ă©tait donc de Prix du neuf = 100 x 1400 / 7 = 20000 Euros Calcul d’une rĂ©duction ou d’une remise Le convertisseur suivant permet de calculer la valeur finale correspondant Ă  une diminution ou remise de x % sur une valeur initiale ou totale. La valeur correspondant Ă  la rĂ©duction est calculĂ©e Ă  partir de la formule suivante Valeur rĂ©duction = Valeur initiale x Pourcentage de rĂ©duction / 100 La formule permettant de retrouver la valeur finale est la suivante Valeur finale = Valeur initiale x 1 – Pourcentage de rĂ©duction / 100 Exemple d’application pour un pourcentage de remise Pendant la pĂ©riode des soldes une remise de 30% est offerte sur l’achat des pantalons. Pour un pantalon valant initialement 70 Euros Montant de la rĂ©duction = 70 x 30 / 100 = 21 Euros Prix aprĂšs rĂ©duction = 70 – 70 x 30 / 100 = 49 Euros Calcul d’une augmentation Le convertisseur suivant permet de calculer la valeur finale correspondant Ă  une augmentation de x % sur une valeur initiale ou totale La valeur correspondant Ă  l’augmentation se calcule Ă  partir de la formule suivante Valeur augmentation= Valeur initiale x Pourcentage d’augmentation / 100 La formule permettant de retrouver la valeur finale est la suivante Valeur finale= Valeur initiale x 1 + Pourcentage d’augmentation / 100 Exemple de calcul d’augmentation en pourcentage Mon loyer, aujourd’hui de 700 Euros, va ĂȘtre augmentĂ© de 3 % Ă  partir du premier janvier prochain Augmentation de loyer = 700 x 3 / 100 = 21 Euros Nouveau montant du loyer = 700 + 700 x 3 / 100 = 721 Euros Calcul de taux variation en % Une variation entre deux nombres peut correspondre Ă  une augmentation ou Ă  une diminution selon que la valeur initiale est supĂ©rieur ou infĂ©rieure Ă  la valeur finale. Le calculateur suivant permet de trouver cette variation. Entrez simplement les valeurs initiale et finale, le taux est calculĂ© automatiquement avec une prĂ©cision de 3 chiffres aprĂšs la virgule. La formule permettant de calculer de taux de variation ou d’évolution en pourcentage est la suivante Taux de variation % = 100 x Valeur finale – Valeur initiale / Valeur initale Si la valeur finale est supĂ©rieure Ă  la valeur initiale, le taux de variation sera positif. Si la valeur finale est infĂ©rieur Ă  a valeur initiale il sera nĂ©gatif. Exemple de calcul de taux de variation Le chiffre d’affaire de cette entreprise est passĂ© de 11 000 Ă  12 100 Euros. Il a donc progressĂ© de Taux de variation = 100 x 12 100 – 11 000 / 11 000 = 10 % Pourcentages exemples et exercices 1 Le vendeur me propose une rĂ©duction de 42 Euros sur un article dont le prix initial est de 140 Euros. Quel est le pourcentage de remise proposĂ© ? Remise = 100 x 42 / 140 = 30 % 2 Mon salaire actuel est de 1400 Euros. Comment calculer son montant aprĂšs une augmentation de 3 % ? Quel est le montant de l’augmentation ? Salaire aprĂšs augmentation = salaire initial + salaire initial x 3 / 100 = 1442 Euros Augmentation = 1442 – 1400 = 42 Euros 3 A l’occasion des soldes, une remise de 40 % est proposĂ©e sur l’achat des vĂȘtements marquĂ©s d’un point rouge. Comment calculer la rĂ©duction correspondant pour un article valant 140 Euros ? Combien faudra t-il payer en caisse pour cet article ? RĂ©duction = 140 x 40 / 100 = 56 Euros Prix en caisse = 140 – rĂ©duction = 84 Euros 4 Mon loyer est de 400 Euros par mois pour un salaire mensuel moyen de 1600 Euros. Quelle est la proportion de mon loyer par rapport Ă  mon salaire ? Proportion loyer = 100 x loyer / salaire = 100 x 400 / 1600 = 25 % 5 Le prix de cet article est de 240 Euros HT. Comment calculer son prix TTC sachant que le taux de TVA est de 20 % ? Prix TTC = Prix HT 1 + 20 / 100 = 288 Euros TTC 6 Mon loyer, actuellement de 400 Euros va passer Ă  410 Euros. Comment calculer l’augmentation en pourcentage ? Augmentation = 100 x 410 – 400 / 400 = % 7 150400 entreprises ont Ă©tĂ© crĂ©es en Ile de France en 2013, dont 33 % par des femmes. Combien d’entreprise ont Ă©tĂ© crĂ©es par les hommes ? Pourcentage des entreprises créées par des hommes = 100 – 33 = 67 % Entreprises créées par des hommes = 67 x Entreprises créées / 100 = 100768 8 243532 vĂ©hicules neufs ont Ă©tĂ© immatriculĂ©s en France en dĂ©cembre 2013. Parmi ces vĂ©hicules 173736 sont des voitures particuliĂšres et 32478 sont des camionnettes, le reste Ă©tant constituĂ© par des camions, cars, remorques, tracteurs routiers ou agricoles, motos, etc source statistiques INSEE. Comment calculer le pourcentage de voitures particuliĂšres neuves immatriculĂ©es sur cette mĂȘme pĂ©riode ? Quelle est la part des camionnettes ? Voitures particuliĂšres 100 x 173736 / 243532 ≈ 71,3 % Camionnettes 100 x 32478 / 243532 ≈ 13,3 % 9 L’objectif de vente pour le mois dernier Ă©tait de 12000 Euros. Comment calculer le taux d’atteinte des objectifs sachant que le chiffre d’affaire s’est Ă©levĂ© Ă  13200 Euros ? Taux = 100 x 13200 / 12000 = 110 %

3 Somme de n termes consĂ©cutifs d'une suite arithmĂ©tique a. Calcul via la somme des premiers entiers Soit la suite arithmĂ©tique de premier terme et de raison (la suite formĂ©e par les nombres impairs). Calculons la somme des 21 premiers termes de la suite : On sait que . Ainsi, on a : Rassemblons les 1 et factorisons par 2 le reste : On reconnait dans la parenthĂšse la RĂ©sumĂ© Le calculateur de somme permet de calculer en ligne la somme des termes de la suite dont l'indice est compris entre la borne infĂ©rieure et la borne supĂ©rieure. somme en ligne Description Le calculateur est en mesure de calculer en ligne la somme des termes d'une suite compris entre deux des indices de cette suite. Calcul de la somme des termes d'une suite de nombres Le calculateur permet de calculer une somme de nombres, il suffit d'utiliser la notation vectorielle. Par exemple pour obtenir la somme de la liste de nombres suivants 6;12;24;48, il faut saisir somme`[6;12;24;48]`. Le rĂ©sultat est alors calculĂ© sous sa forme exact. Calcul de la somme des termes d'une suite Le calculateur est en mesure de calculer la somme des termes d'une suite compris entre deux indices de cette suite. Ainsi, pour obtenir la somme des termes d'une suite dĂ©finie par `u_n=n^2` entre 1 et 4 , il faut saisir somme`n;1;4;n^2` aprĂšs calcul, le rĂ©sultat 30 est retournĂ© `sum_n=1^4 n^2=1^2+2^2+3^2+4^2=30`. Calcul de la somme des termes d'une suite arithmĂ©tique La somme des termes d'une suite arithmĂ©tique `u_n`, entre les indices p et n, est donnĂ©e par la formule suivante `u_p+u_p+1+...+u_n=n-p+1*u_p+u_n/2` En utilisant cette formule, le calculateur est en mesure de dĂ©terminer la somme des termes d'une suite arithmĂ©tique compris entre deux indices de cette suite. Ainsi, pour obtenir la somme des termes d'une suite arithmĂ©tique dĂ©finie par `u_n=3+5*n` entre 1 et 4 , il faut saisir somme`n;1;4;3+5*n`, aprĂšs calcul, le rĂ©sultat est retournĂ©. Le calculateur est en mesure de retrouver la formule gĂ©nĂ©rale qui permet de calculer la somme des nombres entiers `1+...+ p= p*p+1/2`, il suffit de saisir somme`n;1;p;n`. Le calculateur peut utiliser cette formule pour, par exemple, calculer la somme des nombres entiers compris entre 1 et 100 `S=1+2+3+...+100`. Pour calculer cette somme mathĂ©matique, il suffit de saisir somme`n;1;100;n`. Calcul de la somme des termes d'une suite gĂ©omĂ©trique La somme des termes d'une suite gĂ©omĂ©trique `u_n`, entre les indices p et n, est donnĂ©e par la formule suivante `u_p+u_p+1+...+u_n=u_p*1-q^n-p+1/1-q`, q est la raison de la suite. GrĂące Ă  cette formule, le calculateur est en mesure de calculer la somme des termes d'une suite gĂ©omĂ©trique compris entre deux indices de cette suite. Ainsi, pour obtenir la somme des termes d'une suite gĂ©omĂ©trique dĂ©finie par `u_n=3*2^n` entre 1 et 4 , il faut saisir somme`n;1;4;3*2^n` aprĂšs calcul, le rĂ©sultat est retournĂ© . Calculateur de sĂ©ries numĂ©riques et vectorielles Soit `u_n` une suite Ă  valeur dans `RR` ou `CC`, on appelle sĂ©rie de terme gĂ©nĂ©ral `U_n` la suite dĂ©finie par `U_n=sum_k=0^n u_n`, pour tout `n in NN`. Le calculateur peut ĂȘtre utilisĂ© comme un calculateur de sĂ©rie, pour calculer la suite des sommes partielles d'une sĂ©rie. Si on condidĂ©re la sĂ©rie `sum 3+5*n`, le calculateur de sĂ©rie permet de calculer les termes de la suite de ses sommes partielles dĂ©finie par `U_n=sum_k=0^n 3+5*k`. Ainsi pour calculer `U_5=sum_k=0^5 3+5*k`, il faut saisir somme`k;0;5;3+5*k`. Voici la liste des exercices qui utilisent cette fonction pour leur rĂ©solution . Syntaxe sommeindice;borne infĂ©rieure;borne supĂ©rieure;suite Exemples somme`n;1;4;n^2`, retourne 30, c'est Ă  dire `1^2+2^2+3^2+4^2` Calculer en ligne avec somme somme des termes d'une suite . 159 552 767 725 615 166 190 278

comment calculer 2 3 d une somme